กิจกรรม 15 - 19 พฤศจิกายน 2553

สายใยอาหาร ( food web)

    
ในกลุ่มสิ่ิงมีชีวิตหนึ่งๆ ห่วงโซ่อาหารไม่ได้ดำเนินไปอย่างอิสระ แต่ละห่วงโซ่อาหารอาจ
มีความสัมพันธ์ กับห่วงโซ่อื่นอีก โดยเป็นความสัมพันธ์ที่สลับซับซ้อน เช่น สิ่งมีชีวิตหนึ่งในห่วงโซ่อาหาร
อาจเป็นอาหาร ของสิ่งมีชีวิตอีกชนิดหนึ่งในห่วงโซ่อาหารอื่นก็ได้  เราเรียกลักษณะห่วงโซ่อาหารหลายๆ   ห่วงโซ่ที่มีความสัมพันธ์เกี่ยวข้องกันอย่างสลับซับซ้อนว่า  สายใยอาหาร (food web)
 สายใยอาหารของกลุ่มสิ่งมีชีวิตใดที่มีความซับซ้อนมาก แสดงว่าผูู้ั้้้้้้้้้บริโภคลำดับที่ 2 และลำดับที่ 3
มีทางเลือกในการกินอาหารได้หลายทางมีผลทำให้กลุ่มสิ่งมีชีวิตนั้นมีความมั่นคง
ในการดำรงชีวิตมากตามไปด้วย

การสังเคราะห์ด้วยแสง (อังกฤษ: photosynthesis) เป็นกระบวนการทางชีวเคมีที่สำคัญอย่างหนึ่ง ซึ่งทำให้พืช,สาหร่าย และแบคทีเรียบางชนิดได้รับพลังงานจากแสงอาทิตย์มาปรุงอาหารได้ จะว่าไปแล้ว สิ่งมีชีวิตแทบทั้งหมดล้วนอาศัยพลังงานที่ได้จากกระบวนการสังเคราะห์ด้วยแสงเพื่อความเติบโตของตน ทั้งทางตรงและทางอ้อม นับเป็นความสำคัญยิ่งยวดสำหรับสิ่งมีชีวิตในโลก นอกจากนี้ยังก่อให้เกิดการผลิตออกซิเจน ซึ่งมีเป็นองค์ประกอบในสัดส่วนที่มากของบรรยากาศโลกด้วย สิ่งมีชีวิตที่สร้างพลังงานจากกระบวนการสังเคราะห์แสงได้ เรียกว่า "phototrophs"

โอโซนและผลกระทบต่อภูมิอากาศหรือการแผ่รังสีคุณสมบัติหรือศักยภาพของผลกระทบต่อภูมิอากาศ มักใช้คำนิยาม radiative forcing มีหน่วย วัตต์ต่อ ตารางเมตร (W/m^2 ) การประมาณเพื่อทำนายความเปลี่ยนแปลงบริเวณผิวพื้นโดยใช้หลักของรังสีดวงอาทิตย์สุทธิ (net Solar) และ รังสีความร้อนช่วงอินฟราเรดที่โทรโพพอส ซึ่งไม่มีอิทธิพลจากเมฆ ฝุ่นละอองและมหาสมุทร ค่าบวกแสดงว่าพลังงานที่เพิ่มขึ้นหรือ ทำให้อบอุ่นขึ้น ค่าลบคือการเสียพลังงานหรือการเย็นลงของบรรยากาศ โอโซนในโทรโพสเฟียร์ ได้เพิ่มขึ้นในซีกโลกเหนือตั้งแต่ก่อนยุคอุตสาหกรรม จากแบบจำลองและการตรวจวัดพบว่ามี Radiative forcing เป็นบวก ประมาณ 0.5 วัตต์ต่อตารางเมตร โอโซนในสตราโตสเฟียร์ลดลงนับจากช่วง 20 ปีที่ผ่านมา จากการศึกษาต่างๆ ได้รับการยืนยันว่า ระหว่าง ปี 1980-1990 ก่อให้เกิด Radiative forcing เป็นลบ ประมาณ 0.1 วัตต์ต่อตารางเมตร เปรียบเทียบกับ ค่าบวกประมาณ 0.45 วัตต์ต่อตารางเมตรที่เกิดจากการเพิ่มขึ้นของก๊าซเรือนกระจกอื่นๆ ในช่วงเดียวกัน ค่าเฉลี่ยการแผ่รังสีทั่วโลกที่เพิ่มขึ้นจากการเปลี่ยนแปลงโอโซน ดูเหมือนจะเป็นบวกตั้งแต่ก่อนยุคอุตสาหกรรม เกิดขึ้นถึงร้อยละ 20 ของก๊าซเรือนกระจกทั้งหมด ซึ่งเป็นเหตุให้มีการแผ่รังสีเพิ่มขึ้นในช่วงนั้น


ไวรัส เป็นศัพท์จากภาษาลาตินแปลว่า พิษ ในตำราชีววิทยาเก่าของไทยคำว่าไวรัสอาจเรียกว่า วิสา อันเป็นการทับศัพท์ในยุคแรกจากภาษาสันสกฤตที่แปลว่า พิษ เช่นเดียวกัน ปัจจุบันคำว่า ไวรัส หมายถึงจุลินทรีย์ที่สามารถก่อให้เกิดการติดเชื้อได้ (infectious agents) ทั้งในมนุษย์, สัตว์, พืช และ สิ่งมีชีวิตอื่นๆ ที่เป็นสิ่งมีชีวิตมีเซลล์ (cellular life) ทำให้เกิดโรคที่ส่งผลกระทบกว้างขวาง จึงมีความสำคัญที่จะต้องศึกษาทั้งในทางการแพทย์และทางเศรษฐกิจ ไวรัสเป็นปรสิตอยู่ในร่างของสิ่งมีชีวิตอื่น (obligate intracellular parasite) ไม่สามารถเติบโตหรือแพร่พันธุ์นอกเซลล์อื่นได้ ไวรัสอาจถือได้ว่าเป็นจุลินทรีย์ที่มีลักษณะของการเป็นสิ่งมีชีวิตเพียงประการเดียวคือสามารถแพร่พันธุ์ หรือการถ่ายทอดสารพันธุกรรมของตนเองจากรุ่นหนึ่งไปยังอีกรุ่นหนึ่ง อย่างไรก็ตามไวรัสไม่ใช่จุลินทรีย์ที่มีขนาดเล็กที่สุด ยังมีจุลินทรีย์ที่มีขนาดเล็กกว่าไวรัสคือ ไวรอยด์ (viroid) และ พริออน (prion) ไวรัสชนิดแรกที่ค้นพบคือไวรัสใบยาสูบด่าง(TMV หรือ Tobacco Mosaic Virus) ซึ่งค้นพบโดยมาร์ตินัส ไบเยอรินิค ใน ค.ศ. 1899 ในปัจจุบันมีไวรัสกว่า 5,000 ชนิดที่ได้รับการบันทึกไว้ วิชาที่ศึกษาไวรัสเรียกว่าวิทยาไวรัส (virology) อันเป็นสาขาหนึ่งของจุลชีววิทยา (microbiology)




Activity : Nov 15,2010 (1-10)

สายใยอาหาร ( food web)

    
ในกลุ่มสิ่ิงมีชีวิตหนึ่งๆ ห่วงโซ่อาหารไม่ได้ดำเนินไปอย่างอิสระ แต่ละห่วงโซ่อาหารอาจ
มีความสัมพันธ์ กับห่วงโซ่อื่นอีก โดยเป็นความสัมพันธ์ที่สลับซับซ้อน เช่น สิ่งมีชีวิตหนึ่งในห่วงโซ่อาหาร
อาจเป็นอาหาร ของสิ่งมีชีวิตอีกชนิดหนึ่งในห่วงโซ่อาหารอื่นก็ได้  เราเรียกลักษณะห่วงโซ่อาหารหลายๆ   ห่วงโซ่ที่มีความสัมพันธ์เกี่ยวข้องกันอย่างสลับซับซ้อนว่า  สายใยอาหาร (food web)
 สายใยอาหารของกลุ่มสิ่งมีชีวิตใดที่มีความซับซ้อนมาก แสดงว่าผูู้ั้้้้้้้้้บริโภคลำดับที่ 2 และลำดับที่ 3
มีทางเลือกในการกินอาหารได้หลายทางมีผลทำให้กลุ่มสิ่งมีชีวิตนั้นมีความมั่นคง
ในการดำรงชีวิตมากตามไปด้วย


การสังเคราะห์ด้วยแสง (อังกฤษ: photosynthesis) เป็นกระบวนการทางชีวเคมีที่สำคัญอย่างหนึ่ง ซึ่งทำให้พืช,สาหร่าย และแบคทีเรียบางชนิดได้รับพลังงานจากแสงอาทิตย์มาปรุงอาหารได้ จะว่าไปแล้ว สิ่งมีชีวิตแทบทั้งหมดล้วนอาศัยพลังงานที่ได้จากกระบวนการสังเคราะห์ด้วยแสงเพื่อความเติบโตของตน ทั้งทางตรงและทางอ้อม นับเป็นความสำคัญยิ่งยวดสำหรับสิ่งมีชีวิตในโลก นอกจากนี้ยังก่อให้เกิดการผลิตออกซิเจน ซึ่งมีเป็นองค์ประกอบในสัดส่วนที่มากของบรรยากาศโลกด้วย สิ่งมีชีวิตที่สร้างพลังงานจากกระบวนการสังเคราะห์แสงได้ เรียกว่า "phototrophs"


โอโซนและผลกระทบต่อภูมิอากาศหรือการแผ่รังสี
คุณสมบัติหรือศักยภาพของผลกระทบต่อภูมิอากาศ มักใช้คำนิยาม radiative forcing มีหน่วย วัตต์ต่อ ตารางเมตร (W/m^2 ) การประมาณเพื่อทำนายความเปลี่ยนแปลงบริเวณผิวพื้นโดยใช้หลักของรังสีดวงอาทิตย์สุทธิ (net Solar) และ รังสีความร้อนช่วงอินฟราเรดที่โทรโพพอส ซึ่งไม่มีอิทธิพลจากเมฆ ฝุ่นละอองและมหาสมุทร ค่าบวกแสดงว่าพลังงานที่เพิ่มขึ้นหรือ ทำให้อบอุ่นขึ้น ค่าลบคือการเสียพลังงานหรือการเย็นลงของบรรยากาศ โอโซนในโทรโพสเฟียร์ ได้เพิ่มขึ้นในซีกโลกเหนือตั้งแต่ก่อนยุคอุตสาหกรรม จากแบบจำลองและการตรวจวัดพบว่ามี Radiative forcing เป็นบวก ประมาณ 0.5 วัตต์ต่อตารางเมตร โอโซนในสตราโตสเฟียร์ลดลงนับจากช่วง 20 ปีที่ผ่านมา จากการศึกษาต่างๆ ได้รับการยืนยันว่า ระหว่าง ปี 1980-1990 ก่อให้เกิด Radiative forcing เป็นลบ ประมาณ 0.1 วัตต์ต่อตารางเมตร เปรียบเทียบกับ ค่าบวกประมาณ 0.45 วัตต์ต่อตารางเมตรที่เกิดจากการเพิ่มขึ้นของก๊าซเรือนกระจกอื่นๆ ในช่วงเดียวกัน ค่าเฉลี่ยการแผ่รังสีทั่วโลกที่เพิ่มขึ้นจากการเปลี่ยนแปลงโอโซน ดูเหมือนจะเป็นบวกตั้งแต่ก่อนยุคอุตสาหกรรม เกิดขึ้นถึงร้อยละ 20 ของก๊าซเรือนกระจกทั้งหมด ซึ่งเป็นเหตุให้มีการแผ่รังสีเพิ่มขึ้นในช่วงนั้น









ไวรัส เป็นศัพท์จากภาษาลาตินแปลว่า พิษ ในตำราชีววิทยาเก่าของไทยคำว่าไวรัสอาจเรียกว่า วิสา อันเป็นการทับศัพท์ในยุคแรกจากภาษาสันสกฤตที่แปลว่า พิษ เช่นเดียวกัน ปัจจุบันคำว่า ไวรัส หมายถึงจุลินทรีย์ที่สามารถก่อให้เกิดการติดเชื้อได้ (infectious agents) ทั้งในมนุษย์, สัตว์, พืช และ สิ่งมีชีวิตอื่นๆ ที่เป็นสิ่งมีชีวิตมีเซลล์ (cellular life) ทำให้เกิดโรคที่ส่งผลกระทบกว้างขวาง จึงมีความสำคัญที่จะต้องศึกษาทั้งในทางการแพทย์และทางเศรษฐกิจ ไวรัสเป็นปรสิตอยู่ในร่างของสิ่งมีชีวิตอื่น (obligate intracellular parasite) ไม่สามารถเติบโตหรือแพร่พันธุ์นอกเซลล์อื่นได้ ไวรัสอาจถือได้ว่าเป็นจุลินทรีย์ที่มีลักษณะของการเป็นสิ่งมีชีวิตเพียงประการเดียวคือสามารถแพร่พันธุ์ หรือการถ่ายทอดสารพันธุกรรมของตนเองจากรุ่นหนึ่งไปยังอีกรุ่นหนึ่ง อย่างไรก็ตามไวรัสไม่ใช่จุลินทรีย์ที่มีขนาดเล็กที่สุด ยังมีจุลินทรีย์ที่มีขนาดเล็กกว่าไวรัสคือ ไวรอยด์ (viroid) และ พริออน (prion) ไวรัสชนิดแรกที่ค้นพบคือไวรัสใบยาสูบด่าง(TMV หรือ Tobacco Mosaic Virus) ซึ่งค้นพบโดยมาร์ตินัส ไบเยอรินิค ใน ค.ศ. 1899 ในปัจจุบันมีไวรัสกว่า 5,000 ชนิดที่ได้รับการบันทึกไว้ วิชาที่ศึกษาไวรัสเรียกว่าวิทยาไวรัส (virology) อันเป็นสาขาหนึ่งของจุลชีววิทยา (microbiology)




                เซลล์ของสิ่งมีชีวิตมีขนาดเล็กมาก ภายในมีโครงสร้างมากมายดังนี้
                1. ผนังเซลล์ (Cell Wall )
เซลล์ทั่วไปประกอบด้วยสารพวกเซลลูโลสเป็นหลัก ทำหน้าที่ห่อหุ้มป้องกันอันตรายให้แก่เซลล์พืช ให้เซลล์คงรูปเพิ่มความแข็งแรง เซลล์ของสัตว์ไม่มีผนังเซลล์ แต่เซลล์สัตว์บางชนิดอาจมีสารเคลือบเยื่อหุ้มเซลล์ได้ มีลักษณะแตกต่างกันไปแล้วแต่ชนิดของเซลล์นั้น ๆ เช่น เปลือกกุ้ง กระดองปู มีสารเคลือบพวกไกลโคโปรตีน (Glycoprotein)  เซลล์พวกไดอะตอม มีสารเคลือบเป็นพวก ซิลิกา สารเคลือบเหล่านี้มีประโยชน์ทำให้เซลล์คงรูปร่างได้

                2. เยื่อหุ้มเซลล์ (Cell Membrane) เป็นเยื่อบาง ๆ ประกอบด้วยโปรตีน และไขมัน ทำหน้าที่ควบคุมปริมาณ และชนิดของสารที่ผ่านเข้าออกจากเซลล์ และมีรูเล็ก ๆ เพื่อให้สารบางอย่างผ่านเข้าออกได้ และไม่ให้สารบางอย่างผ่านเข้าออกจากเซลล์ จึงมีสมบัติเป็นเยื่อบางๆ (Semipermeable Membrane)

                3. ไซโทพลาซึม (Cytoplasm) เป็นส่วนประกอบที่เป็นของเหลวอยู่ภายในเซลล์ มีสารที่ละลายน้ำได้เช่น โปรตีน ไขมัน เกลือแร่ ฯลฯ ประกอบด้วยหน่วยเล็ก ๆ ที่สำคัญหลายชนิด ดังนี้
3.1 ไมโทคอนเดรีย (Mitochondria) เป็นโครงสร้างที่มีลักษณะยาวรีเป็นแหล่งผลิตสาร
ที่มีพลังงานสูงให้แก่เซลล์
                3.2 คลอโรพลาส (Chloroplast)
เป็นโครงสร้างพบเฉพาะในเซลล์พืช มองเห็นเป็นสีเขียวเพราะมีสารพวกคลอโรฟิลล์ ซึ่งไม่ดูดกลืนแสงสีเขียว คลอโรฟิลล์เป็นสาระสำคัญที่ใช้ในกระบวนการสังเคราะห์ด้วยแสง
3.3 ไรโบโซม (Ribosome) เป็นโครงสร้างที่มีขนาดเล็ก เป็นแหล่งที่มีการสังเคราะห์
โปรตีนเพื่อส่งออกไปใช้นอกเซลล์
               
3.4 กอลจิคอมเพลกซ์ (Golgi Complex)
เป็นโครงสร้างที่เป็นถุงแบน ๆ คล้ายจานซ้อน
กันเป็นชั้น ๆ หลายชั้น ทำหน้าที่สร้างสารคาร์โบไฮเดรตที่รวมกับโปรตีน แล้วส่งออกไปใช้ภายในเซลล์
3.5 เซนตริโอล (Centriole) พบเฉพาะในเซลล์สัตว์ และโพรติสต์บางชนิด มีหน้าที่เกี่ยวกับการแบ่งเซลล์
3.6 แวคิวโอล (Vacuole) เป็นโครงสร้างที่มีช่องว่างชนาดใหญ่มากในเซลล์พืช ภายในมีสารพวกน้ำมัน ยาง และแก๊สต่าง ๆ
4. นิวเคลียส (Nucleus) อยู่ตรงการเซลล์ เซลล์ส่วนใหญ่มีนิวเคลียส ยกเว้นเซลล์บางชนิด เช่น เซลล์เม็ด เลือดแดงของสัตว์เลี้ยงลูกด้วยน้ำนม และเซลล์ลำเลียงอาหารของพืช เมื่อเจริญเติบโตเต็มที่จะไม่มีนิวเคลียส นิวเคลียสทำหน้าที่ ถ่ายทอดลักษณะทางพันธุกรรม ควบคุมการสังเคราะห์สารประกอบของเซลล์ ส่วนประกอบของนิวเคลียสมีดังนี้
                4.1 นิวคลีโอพลาซึม (Nucleoplasm) เป็นของเหลวภายในนิวเคลียส เป็นส่วนที่ใส ไม่มีสี
ประกอบด้วยเม็ดสารเล็ก ๆ ที่มีรูปร่างไม่แน่นอน
               
4.2 ร่างแหนิวเคลียส
มีโครงสร้างเป็นเส้นที่สานกันเป็นร่างแห เมื่อเซลล์มีการแบ่งตัว ร่างแหนิวเคลียสจะเปลี่ยนเป็นร่างแหโครโมโซม ซึ่งประกอบด้วย DNA หรือยีน (gene) ซึ่งมีสารพันธุกรรมประกอบอยู่ และเป็นตัวควบคุมการแสดงออกถึงลักษณะต่าง ๆ ของสิ่งมีชีวิต
               
4.3 นิวคลีโอลัส (Nucleolus) เป็นตำแหน่งที่ติดสีเคมีบนไครโมโซม ประกอบด้วยสารประเภท DNA  TNA ซึ่งทำหน้าที่เกี่ยวข้องกับกลไกการสร้างโปรตีน


สารละลายไฮโพโทนิก (Hypotonic solution)
         หมายถึง สารละลายภายนอก เซลล์เม็ดเลือดแดงมีความเข้มข้นน้อยกว่าสารละลายภายใน
เซลล์เม็ดเลือดแดงจะทำให้นํ้าภายนอกเซลล์เม็ดเลือดแดงออสโมซิสเข้าสู่เซลล์เม็ดเลือดแดง
เป็นผลทำให้ซลล์เม็ดเลือดแดงเต่งขึ้น ในความเป็นจริงน้ำก็เคลื่อนที่ออกจากเซลล์เหมือนกันแต่
น้อยกว่าเคลื่อนที่เข้าเซลล์ ผลจากการที่น้ำออสโมซิสเข้าเซลล์แล้วทำให้เซลล์เต่ง
เรียกว่า plasmoptysis
        ในเซลล์พืชจะมีผนังเซลล์ที่หนา แข็งแรง ถึงเกิดแรงดันเต่งมาก ๆ ผนังเซลล์ก็ยังต้านทานได้
เรียว่า wall pressure แรงดันเต่งช่วยให้เซลล์พืชรักษารูปร่างได้ดี เช่น ใบกางได้เต็มที่ ยอดตั้งตรง
         ในเซลล์สัตว์์ไม่มีผนังเซลล์ ถ้า้ำน้ำออสโมซิสเข้าไปมากอาจทำให้เซลล์แตกได้ เช่น
เซลล์เม็ดเลือดแดง เรียกปรากฏการณ์ที่ทำให้เซลล์เม็ดเลือดแดงแตกว่า haemolysis


การลําเลียงแบบแอกทีฟทรานสปอร์ต (active  transport)
           เป็นการแพร่ของสารโดยใช้โปรตีนที่เป็นองค์ประกอบของเยื่อหุ้มเซลล์เป็นตัวพา
และใช้พลังงานจาก ATP (adenosine triphosphate) ซึ่งสามารถทําให้อนุภาคของสาร
จากบริเวณที่มีความเข้มข้นของสารน้อยแพร่ผ่านเยื่อหุ้มเซลล์สู่บริเวณที่มีความเข้มข้น
ของสารมากกว่าได้
http://www.thaigoodview.com/library/contest2551/science04/45/2/cell/content/active_trans.html


โปรตีน (อังกฤษ: protein) เป็นสารอินทรีย์ซึ่งพบได้ในสิ่งมีชีวิตทุกชนิด มีโครงสร้างซับซ้อนและมีมวลโมเลกุลมาก โปรตีนมีหน่วยย่อยคือ กรดอะมิโน เรียงต่อกันด้วยพันธะเปปไทด์ โปรตีนมีหน้าที่สำคัญต่อโครงสร้างและกิจกรรมภายในเซลล์ของสิ่งมีชีวิตทุกชนิด รวมทั้งไวรัสด้วย โปรตีนในอาหารนั้นเป็นแหล่งของกรดอะมิโน ให้แก่สิ่งมีชีวิตแต่ไม่สามารถสังเคราะห์กรดอะมิโนเหล่านั้นได้เอง
โปรตีนเป็นหนึ่งในมหโมเลกุล (macromolecules) เช่นเดียวกันกับโพลีแซคาไรด์ (คาร์โบไฮเดรต) และกรดนิวคลีอิก (สารพันธุกรรม) ซึ่งเป็นองค์ประกอบพื้นฐานของสิ่งมีชีวิต โปรตีนถูกค้นพบครั้งแรกโดย Jöns Jacob Berzelius ในปี พ.ศ. 2381 (ค.ศ. 1838)




สัตว์ที่อาศัยในน้ำจืด http://www.school.net.th/library/create-web/10000/science/10000-7954.html









แวคิวโอลเป็นช่องๆ ล้อมรอบด้วยเมมเบรนชนิดเยื่อยูนิตชั้นเดียว อยู่ภายในเซลล์ยูแคริโอต (eukaryotic cell) บางชนิด มักพบในเซลล์พืชส่วนใหญ่และสัตว์หลายชนิด โดยแวคิวโอลในสัตว์มักดล็กกว่าในพืช แวคิวโอลซึ่งสามารถทำหน้าที่เป็นที่เก็บ หลั่ง และถ่ายของเหลวภายในเซลล์ แวคิวโอลและสารภายในถือว่าแตกต่างจากไซโตพลาสซึม สามารถแบ่งออกได้ 4 ประเภท คือ
- Contractile vacuole จะพบในสิ่งมีชีวิตเซลล์เดียว ในอาณาจักรโพรทิสตา ทำหน้าหน้าทีรักษาสมดุลของน้ำ
- Food vacuole บรรจุอาหาร พบในเซลล์เม็ดลือดขาวบนสิ่งมีชีวิตเซลล์เดียวหรือสัตว์เลี้ยงลูกด้วยนม นอกจากนี้เราอาจแบ่งได้อีก เช่น Fat vacuole
- Sap vacuole จะเจอในเซลล์พืช ทำหน้าที่สะสมสีไอออน น้ำตาล กรดอะมิโน สะสมผลึกสารพิษในเซลล์
- Gas vacuole สำหรับสะสมแก๊สต่างๆ

สัตว์ที่อาศัยในน้ำจืด เช่นปลาน้ำจืด มีความเข้มข้นของเกลือแร่ในร่างกายสูงกว่าแหล่งที่
อยู่อาศัย คือ มีแรงดันออสโมติกของของเหลวในร่างกายสูงกว่าแรงดันออสโมติกของแหล่งที่
อยู่อาศัย น้ำจึงออสโมซิส เข้าตัวปลาตลอดเวลา จึงทำให้ปลาสูญเสียเกลือแร่ออกจากร่าง
กาย ดังนั้นในปลาน้ำจืดจึงมีการปรับตัวและกลไกต่าง ๆ เพื่อแก้ปัญหานี้ โดย
1. ผิวหนังและเกล็ดทำหน้าที่ป้องกันไม่ให้น้ำผ่านเข้าร่างกายได้
2. บริเวณเหงือกเป็นเยื่อบาง ๆ ที่จะสัมผัสกับน้ำอยู่ตลอดเวลา หรือย่อมมีน้ำปะปนเข้าไป
ด้วย ปลาจึงมีการขจัดน้ำในส่วนที่ไม่ต้องการในรูปปัสสาวะที่ค่อนข้างเจือจาง และ
ปัสสาวะบ่อย
3. เกลือแร่ที่สูญเสียไปนั้น ร่ากายจะมีอวัยวะพิเศษบริเวณเหงือกคอยดูดแร่ธาตุกลับคืนสู่
ร่างกาย โดยกระบวนการแอกทีฟทรานสปอร์ต



ในร่างกายคนมีน้ำอยู่ประมาณ 65%- 70% ซึ่งร่างกายจะต้องรักษาดุลยภาพนี้ไว้ การรักษาดุลยภาพของน้ำในร่างกายทำได้โดยการควบคุมปริมาตรน้ำที่รับเข้าและที่ขับออกจากร่างกาย ซึ่งมีช่องทางและผ่านกระบวนการต่างๆ
ตาราง แสดงปริมาณน้ำที่ร่างกายได้รับและร่างกายขับออกใน 1 วัน
             ปริมาณน้ำที่ร่างกายได้รับ             ปริมาณน้ำที่ร่างกายขับออก                 1. จากอาหาร 1,000 cm3                                        1. ลมหายใจออก 350 cm3
                 2. จากน้ำดื่ม 1,200 cm3                               2. ขับเหงื่อ 500 cm3
                 3. จากปฏิกิริยาในร่างกาย 300 cm3                 3. ปัสสาวะ 1,500 cm3
                                                                                4. อุจจาระ 150 cm3

              รวม 2,500 cm3                           รวม 2,500 cm3
               ในของเหลวที่ร่างกายรับเข้าและที่ขับออกมานั้น นอกจากจะประกอบด้วยน้ำเป็นส่วนใหญ่ ยังมีเกลือแร่และสารต่างๆ อยู่ด้วย แม้ว่าสารเหล่านี้จะมีปริมาตรน้อยนิดเมื่อเทียบกับปริมาตรของน้ำ แต่ก็มีความสำคัญอย่างยิ่ง และร่างกายต้องรักษาสมดุลต่างๆ ดังกล่าวไว้ให้ได้เพื่อให้ระบบต่างๆ ทำงานได้อย่างปกติ อวัยวะสำคัญในการรักษาดุลยภาพของน้ำและสารต่างๆ ในร่างกายคือไต ซึ่งมีโครงสร้างและการทำงานร่วมกับอวัยวะ



ประโยชน์ของน้ำนมแม่
นมแม่เป็นส่วนสำคัญที่ช่วยเสริมสร้างภูมิต้านทานที่แข็งแรงให้กับลูก เพราะนมแม่มีส่วนประกอบของโมเลกุลและสารอาหารสำคัญหลายๆ อย่าง เช่น แอนติบอดี้ พรีไบโอติก ที่ทำหน้าที่ปกป้องลูกจากเชื้อโรค ช่วยเสริมสร้างจุลินทรีย์สุขภาพดีในกระเพาะอาหาร ดังนั้น หากเป็นไปได้คุณแม่ควรให้ลูกดื่มนมแม่ตั้งแต่หลังคลอด เพื่อความแข็งแรงของระบบภูมิต้านทาน และลดอัตราการติดเชื้อหรืออาการเจ็บป่วยในวัยเด็กของลูก พร้อมทั้งยังเป็นการเสริมสร้างการทำงานของภูมิต้านทานของลูกได้ตลอดไปด้วย




1.Antigens:  แอนติเจน   ส่วนใหญ่เป็นสารโปรตีนที่เป้นตัวกระตุ้น
       หรือ    เป็นสาเหตุให้ร่างกายสร้างแอนติบอดีมาต่อต้านแอนติเจนโดยอาจเป็นแบค
       ทีเรียหรือไวรัส  หรืออาจเป็นสารพิษที่ได้จากแบคทีเรียหรือไวรัสก็ได้  แอนติเจน
       ปกติที่พบใน  ร่างกายตั่งแต่เกิด  คือ  แอนติเจนที่เป้นตัวบ่งชี้หมู่เลือดต่างๆ
2.Antibodies: แอนติบอดี   เป็นสารโปรตีนอยู่ในส่วนที่เป็นของเหลว
         ของร่างกาย สร้างจากเม็ดเลืือดขาวชนิด ลิมโฟไซต์  เมื่อมีแอนติเจนเข้าสู้ร่าง
         กายแอนติบอดี้ชนิดต่างๆ จะมาจับแอนติเจนอย่างเฉพาะเจาะจงเป็นชนิดๆไป
         ซึ่งจะมีปฏิกิริยาแตกต่างกันจะปล่อยสารที่เป็นพิษต่อต้านแอนติเจน โดยแอนติ
         บอดีจะจับกับโมเลกุลของสารพิษ  ที่แอนติเจนปล่อยออกมากลายเป็นสารประ
         กอบเชิงซ้อน ของ แอนติเจนกับแอนติบอดีที่เรียกว่าสารประกอบแอนติเจน
         แอนติบอดี  แอนติบอดีชนิดแอกกลูตินินจะจับแบคทีเรีย  หรือเชื้อไวรัสซึ่งเป็น
         แอนติเจนแอนติบอดีอีกชนิดหนึ่ง ชื่อว่า ไลซินจะฆ่าแอนติเจนหรือเชื้อโรคโดย
         การสลายเยื้อหุ้มเซลล์ชั้นนอกให้เปลี่ยนเป็นสารที่เรียกว่าไฟบรินซึ่งเป็นเส้นใย
         สานเป็นร่างแหเป็นลิ่มคล้ายก้อนวุ้น



การแบ่งเซลล์แบบไมโอซิส (อังกฤษ: Meiosis) เป็นการแบ่งเซลล์ที่พบในการสร้างเซลล์สืบพันธุ์ในยูคาริโอต การแบ่งเซลล์แบบนี้ไม่พบในเซลล์ทุกเซลล์ การแบ่งเซลล์แบบไมโอซิสแบ่งเป็นระยะได้ 2 ระยะ ดังนี้
  1. ระยะอินเตอร์เฟส (Interphase) มีการจำลองดีเอ็นเอ มีการสังเคราะห์อาร์เอ็นเอ และโปรตีนเพื่อเตรียมพร้อมที่จะแบ่งตัว โครโมโซมประกอบด้วย 2 โครมาทิด เยื่อหุ้มนิวเคลียสยังไม่สลายไป
  2. ระยะแบ่งเซลล์ (cell division) แบ่งออกเป็น 2 ระยะคือ
    1. ระยะไมโอซิส I (Meiosis I) เป็นระยะที่จำนวนโครโมโซมลดลงครึ่งหนึ่ง แบ่งเป็น 4 ระยะคือ
    
  3. ระยะโพรเฟส I เป็นช่วงที่ใช้เวลาถึง 90% ของการแบ่งเซลล์แบบไมโอซิส โครมาตินหดตัวเข้ามาเป็นโครโมโซม โครโมโซมที่เป็นคู่กัน (homologous chromosome) มาเข้าคู่กัน ทำให้เห็นแต่ละคู่มี 4 โครมาทิด เกิดการแลกเปลี่ยนชิ้นส่วนระหว่างซิสเตอร์ โครมาติด ซึ่งเรียกว่า ครอสซิ่ง โอเวอร์ (crossing over) ซึ่งทำให้เกิดการกลายพันธุ์หรือการแปรผันพันธุกรรม ซึ่งแบ่งย่อยออกเป็น 5 ระยะคือ
    1. เลปโททีน (Leptotene) โครโมโซมเป็นเส้นใย ขนาดเล็กและยาวมากสานกันไปมาเรียกว่า โครโมนีมา (Chromonema) บางส่วนพันกันถี่มาก เมื่อย้อมสีจะติดสีเข้มดูคล้ายลูกปัดซึ่งเรียกว่า โครโมเมียร์ (Chromomere) เห็นนิวคลีโอลัสชัดเจน
    2. ไซโกทีน (Zygotene) ส่วนฮอมอโลกัสโครโมโซมมาจับคู่เรียงกันตามความยาวของโครโมโซม ทำให้โครโมเมียร์ตรงกันทุกจุด เรียกว่า ซิแนปส์ (Synapse) การเกิดซิแนปส์ทำให้มีการเข้าคู่ของแอลลีล
    3. แพคีทีน (Pachytene) โครโมนีมาพันแน่นขึ้นจนเห็นเป็นเส้นหนาชัดเจน เรียกว่า โครโมโซม โดยฮอมอโลกัสโครโมโซมอยู่กันเป็นคู่ เรียกว่า ไบเวเลนต์ (Bivalent) แต่ละไบเวเลนต์ประกอบด้วย 4 โครมาทิด เรียกสภาพนี้ว่า เทแทรด (Tetrad)
    4. ดิโพลทีน (Diplotene) เซนโทรเมียร์ของแต่ละฮอมอโลกัสโครโมโซมแยกออกจากกัน แต่มีบางส่วนของฮอมอโลกัสโครโมโซมยังพันกันอยู่ เรียกบริเวณนั้นว่า ไคแอสมา (Chiasma) ซึ่งอาจมีได้หลายตำแหน่ง มีการแลกเปลี่ยนชิ้นส่วนของนอนซิสเตอร์โครมาทิดเรียกว่า ครอสซิงโอเวอร์ (Crossing Over) ทำให้ยีนมีการเรียงตัวกันใหม่ และเกิดการแปรผันทางพันธุกรรม
    5. ไดอะไคนีซิส (Diakinesis) โครโมโซมหดสั้นมากขึ้นทำให้ไบเวเลนด์แยกตัวมากขึ้น โครโมโซมติดกันเฉพาะส่วนปลาย นิวคลีโอลัสและเยื่อหุ้มนิวเคลียสเริ่มสลายตัวไป ทำให้ไบเวเลนต์กระจายอยู่ในเซลล์
  4. ระยะเมทาเฟส I โครโมโซมที่มี 4 โครมาติดมาเรียงตัวที่ระนาบกลางเซลล์ มีเส้นใยสปินเดิลจับที่ไคนีโตคอร์
  5. ระยะแอนาเฟส I เป็นระยะที่มีการดึงโฮโมโลกัสโครโมโซมออกจากกัน เป็นระยะที่เกิดการลดจำนวนโครโมโซม
  6. ระยะเทโลเฟส I และการแบ่งไซโตพลาสซึม แต่ละขั้วของเซลล์มีโครโมโซมเป็นแฮพลอยด์ (n) 2 ชุด (แต่ยังมีซิสเตอร์โครมาติดอยู่) มีการแบ่งไซโตพลาสซึมและสร้างเยื่อหุ้มนิวเคลียสขึ้นใหม่
  7. ระยะไมโอซิส II (Meiosis II)
  8. ระยะโพรเฟส II เป็นระยะที่สร้างเส้นใยสปินเดิลเพื่อดึงซิสเตอร์ โครมาติดออกจากกัน
  9. ระยะเมตาเฟส II ซิสเตอร์โครมาติดเรียงอยู่กึ่งกลางเซลล์
  10. ระยะอะนาเฟส II เป็นระยะที่ดึงซิสเตอร์โครมาติดออกจากกัน
  11. ระยะเทโลเฟส II และการแบ่งไซโตพลาสซึม มีการสร้างเยื่อหุ้มนิวเคลียสและแบ่งไซโตพลาสซึมตามมา ในที่สุดจะได้เซลล์ลูก 4 เซลล์ ซึ่งมีโครโมโซมเป็นแฮพลอยด์ (n)

http://th.wikipedia.org/wiki/%E0%B9%84%E0%B8%A1%E0%B9%82%E0%B8%AD%E0%B8%8B%E0%B8%B4%E0%B8%AA




กรดนิวคลีอิก (Nucleic acid)
เป็นสารชีวโมเลกุลที่มีขนาดใหญ่คล้ายโปรตีน  ประกอบด้วยธาตุคาร์บอน  ไฮโดรเจน
 ออกซิเจนไนโตรเจนและฟอสฟอรัส กรดนิวคลีอิกพบทั้งในเซลล์พืชและสัตว์ร่างกาย
สามารถสร้างกรดนิวคลีอิกได้จากกรดอะมิโนและคาร์โบไฮเดรต กรดนิวคลีอิกทำหน้าที่เก็บ
และถ่ายทอดข้อมูลทางพันธุ์กรรมของสิ่งมีชีวิตจากรุ่นหนึ่งไปยังรุ่นต่อไปให้แสดงลักษณะต่าง ๆ
ของสิ่งมีชีวิต นอกจากนี้ ยังทำหน้าที่ควบคุมการเจริญเติบโตและกระบวนการต่างๆ ของสิ่งมีชีวิต
       กรดนิวคลีอิกพบครั้งแรกโดย Friedrich Miescher  ในปี ค.ศ. 1870  และตั้งชื่อว่า นิวคลีอิน (nuclein)
|ต่อมาเมื่อพบว่ามีสภาพเป็นกรด จึงได้ชื่อว่า กรดนิวคลีอิก 
          ในปี ค.ศ. 1947 Erwin Chargaff  นักชีวเคมีชาวอเมริกันและเพื่อนร่วมงาน ได้ศึกษาองค์ประกอบทางเคมีของ DNA  ที่ได้มาจากสิ่งมีชีวิตหลายชนิดและพบว่าความสัมพันธ์ของคู่เบส คือ  Adenine = Thymine  และ Cytosine = Guanine 
แสดงว่า  Adenine จับคู่กับ Thymine  และ Cytosine จับคู่กับ Guanine 
          ในปี ค.ศ.1950-1953 M.H.F. Wilkins นักฟิสิกส์ชาวอังกฤษ และ Rosalind Franklin เพื่อนร่วมงาน
ได้ศึกษาโครงสร้างของ DNA  โดยอาศัยการหักเหของรังสีเอ็กซ์ (X-ray diffraction) พบว่ามีการจัดเรียงตัวเหมือนกัน
และอยู่ในสภาพที่เป็นเกลียว (helix) โดยที่แต่ละรอบของเกลียวมีระยะเท่าๆ กัน
http://www.sukontason2009.ob.tc/p48.html


การถ่ายทอดลักษณะทางพันธุกรรม

ยีนและโครโมโซม

ยีน
ยีน (gene) คือ หน่วยพันธุกรรมที่อยู่บนโครโมโซม (chromosome) มีลักษณะเรียงกันเหมือนสร้อยลูกปัด ทำหน้าที่ควบคุมลักษณะต่างๆ ทางพันธุกรรมจากพ่อแม่ไปยังลูกหลาน ในคนจะมียีนประมาณ 50,000 ยีน แต่ละยีนจะควบคุมลักษณะต่างๆ ทางพันธุกรรมเพียงลักษณะเดียว ยีนที่ควบคุมลักษณะพันธุกรรมบางอย่างมี 2 ชนิด คือ
1. ยีนเด่น (dominant gene) คือ ยีนที่แสดงลักษณะนั้นๆ ออกมาได้ แม้มียีนนั้นเพียงยีนเดียว
2. ยีนด้อย (recessive gene) คือ ยีนที่สามารถแสดงลักษณะให้ปรากฏออกมาได้ ก็ต่อเมื่อมียีนด้อยทั้งสองยีนอยู่บนคู่โครโมโซม

โครโมโซม
โครโมโซม (chromosome) ในเซลล์ของสิ่งมีชีวิตประกอบด้วย นิวเคลียส เยื่อหุ้มเซลล์ ไซโทพลาซึม เมื่อใช้กล้องจุลทรรศน์ส่องดูนิวเคลียสของเซลล์ที่กำลังแบ่งตัวจะเห็นโครงสร้างมีลักษณะเป็นเส้นยาวๆ เล็กๆ ขดไปมาเรียกโครงสร้างนี้ว่า โครมาทิน (chromatin) เมื่อเซลล์โครมาทินขดแน่นมากขึ้นและหดสั้นลง จะมีลักษณะเป็นแท่งเรียกว่า โครโมโซม (chromosome) โครโมโซมแต่ละโครโมโซมประกอบด้วยแขน 2 ข้าง เรียกว่า โครมาทิด (chromatid) ซึ่งแขนทั้งสองจะมีจุดเชื่อมกันเรียกว่า เซนโทรเมียร์ (centromere) ดังรูป







โรคเลือดจางธาลัสซีเมีย(Thalassemia)คืออะไร
   คือ โรคซีดชนิดหนึ่งที่เป็นกันในครอบครัวหรือที่เรียกว่า โรคกรรมพันธุ์มีการสร้างสาร ฮีโมโกลบิน ซึ่งเป็นสารสีแดงในเม็ดเลือดแดง ลดน้อยลง เม็ดเลือดแดงมีลักษณะผิดปกติและแตกง่าย ก่อให้เกิดอาการซีด เลือดจางเรื้อรัง และมีภาวะแทรกซ้อนอื่นๆ ตามมา ผู้ที่เป็นโรคนี้ ได้รับยีนที่ควบคุมการสร้างเม็ดเลือดแดงผิดปกติมาจากทั้งพ่อและแม่
   ยีน คือ หน่วยพันธุกรรมที่กำหนดลักษณะต่างๆ ของสิ่งมีชีวิต พืช สัตว์ มนุษย์ เช่น ในมนุษย์กำหนดสี และลักษณะของ ผิว ตา และผมความสูง ความฉลาด หมู่เลือด ชนิดของฮีโมโกลบิน รวมทั้งโรคบางอย่าง เป็นต้น ยีนที่ควบคุมกำหนดลักษณะต่างๆ ในร่างกายจะเป็นคู่ ข้างหนึ่งได้รับถ่ายทอดมาจากพ่อ อีกข้างหนึ่งได้รับมาจากแม่ สำหรับผู้มียีนธาลัสซีเมีย(Thalassemia) มีได้สองแบบคือ

  1. เป็นพาหะ คือ ผู้ที่มียีน หรือกรรมพันธุ์ของโรคธาลัสซีเมีย(Thalassemia) พวกหนึ่งเพียงข้างเดียวเรียกว่า มียีนธาลัสซีเมียแฝงอยู่ จะมีสุขภาพดีปกติ ต้องตรวจเลือดโดย วิธีพิเศษ จึงจะบอกได้ เรียกว่า เป็นพาหะ เพราะสามารถ่ายทอดยีนผิดปกติไปให้ลูกก็ได้ พาหะอาจให้ยีนข้างที่ปกติ หรือข้างที่ผิดปกติให้ลูกก็ได้
  2. เป็นโรค คือ ผู้ที่รับยีนผิดปกติ หรือกรรมพันธุ์ของโรคธาลัสซี เมียพวกเดียวกันมาจากทั้งพ่อและแม่ ผู้ป่วยมียีนผิดปกติทั้งสองข้าง และถ่ายทอดความผิดปกติข้างใดข้างหนึ่งต่อไป ให้ลูกแต่ละคนด้วย
http://www.dmsc.moph.go.th/webroot/ri/Npublic/p04.htm



โรคธาลัสซีเมียเป็นโรคโลหิตจางทางพันธุกรรมที่พบได้บ่อยถึงร้อยละ 10 ในประชากรไทย และพบว่าประชากรไทยเป็นพาหะของโรครวมกันนี้ประมาณ ร้อยละ 40 ( พาหะโรคธาลัสซีเมีย หมายถึง ผู้ที่มียีนธาลัสซีเมียผิดปกติเพียงข้างเดียว และยังคงเหลือยีนที่ปกติอีก 1 ข้างซึ่งเพียงพอที่จะทำหน้าที่ได้เพียงพอที่ร่างกายจะไม่เกิดความผิดปกติ ผู้ที่พาหะหรือเป็นแฝงของโรคธาลัสซีเมียจะมีสุขภาพเหมือนคนปกติทั่วไป)
สาเหตุของโรค
           โรคธาลัสซีเมียนี้เป็นโรคซีดที่เกิดจากมียีนผิดปกติซึ่งจะทำให้เม็ดเลือดแดงแตกง่าย สาเหตุนั้นเกิดจากการสร้างโปรตีนในเม็ดเลือดที่ชื่อว่า “ฮีโมโกลบิน” ลดลง อาการแสดงของโรคจะแตกต่างกันตั้งแต่ไม่มีอาการจนถึงซีดมากจนต้องให้เลือดทดแทน หรือบางรายที่เป็นชนิดที่รุนแรงที่สุดอาจจะเสียชีวิตตั้งแต่อยู่ในครรภ์มารดาหรือภายหลังคลอด ส่วนผู้ป่วยที่เป็นโรคธาลัสซีเมียที่รุนแรงน้อยลงมาก็จำเป็นต้องได้รับการดูแลรักษาอย่างใกล้ชิดจากแพทย์เพื่อจะได้มีคุณภาพชีวิตที่ดีและเหมาะสม โรคธาลัสซีเมียจึงเป็นโรคที่มีผลกระทบในด้านสุขภาพ จิตใจ เศรษฐกิจและสังคม ดังนั้น การป้องกันและควบคุมโรคธาลัสซีเมียจึงมีความจำเป็นมาก โดยการรักษาผู้ป่วยที่เป็นโรคให้มีคุณภาพชีวิตที่ดีตามสถานภาพ และป้องกันไม่ให้มีทารกที่เกิดใหม่เป็นโรคธาลัสซีเมีย หรือลดจำนวนทารกเกิดใหม่ที่เป็นโรคธาลัสซีเมียลงให้มากที่สุด ดังนั้นการหาแนวทางที่จะให้ประชาชนมีส่วนร่วมในการป้องกันและแก้ไขปัญหา ได้แก่ การให้ความรู้เกี่ยวกับโรคธาลัสซีเมียโดยการจัดอบรมต่างๆ รวมถึงมีการคัดกรองพาหะของโรคนี้ด้วย

http://www.thaigoodview.com/node/3011


คนที่ตาบอดสีจะมองเห็นสีผิดไปจากคนปกติ  เช่น คนที่ตาบอดสีแดงและสีเขียว  จะมีปัญหาในการแยกสีทั้งสอง
    นักเรียนเห็นอะไรบ้างจากภาพด้านล่าง
         ถ้านักเรียนไม่สามารถบอกได้ว่าในภาพด้านล่างเป็นภาพอะไร  แสดงว่านักเรียนตาบอดทั้งสีแดงและสีเขียว


http://km.vcharkarn.com/other/mo6/56-2010-07-14-09-20-24


  1. ABO System จะแบ่งออกได้เป็นสี่หมู่ คือ A , B , AB และ O (หมู่เลือด O พบมากที่สุด, A กับ B พบได้มากพอๆ กัน และ AB มีน้อยที่สุด)
  2. Rh System จะรายงานได้เป็นสองพวก
    1. +ve หรือ Rh+ve คือ พวกที่มี Rh (Rhesus) Antigen บนเม็ดเลือดแดง พวกนี้จะพบได้มาก ซึ่งเกือบทั้งหมดของคนไทยเป็นพวกนี้
    2. -ve หรือ Rh-ve คือ พวกที่ไม่มี Rh (Rhesus) Antigen บนเม็ดเลือดแดง พวกนี้จะพบได้น้อยมาก คนไทยเราพบเลือดพวกนี้เพียง 0.03% เป็นพวกที่บางครั้งอาจถูกเรียกว่าเป็นผู้มีโลหิตหมู่พิเศษ ซึ่งจะพบได้มากขึ้นในชาวไทยซิกข์ (แต่ในคนกลุ่มนี้ แม้ว่าจะมีโอกาสตรวจพบ Rh-ve ได้มากกว่าคนไทยปกติ แต่โดยส่วนใหญ่ก็ยังคงเป็นพวก Rh+ve อยู่ดี)
ตัวอย่างการรายงานกลุ่มเลือด เช่น A+ve คือเลือดกรุ๊ป A Rh+ve ตามปกติ ส่วน AB-ve เป็นเลือดกรุ๊ป AB และเป็นหมู่เลือดพิเศษ Rh-ve ซึ่งหายากที่สุด โดยปกติแล้วโลหิตหมู่ AB ในคนไทยพบน้อยกว่า 5% ซึ่งถ้าเป็น AB-ve จะพบแค่ 1.5 คน ในหมื่นคนเท่านั้น
มารดาและบุตรในครรภ์ หากกลุ่มเลือด Rh System ไม่ตรงกัน (มีโอกาสเกิดน้อยมากในคนไทย) มีโอกาสทำให้เกิดโรคแทรกซ้อนได้ เช่น ภาวะตัวเหลืองในเด็กแรกเกิด






ไม่มีความคิดเห็น:

แสดงความคิดเห็น